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Abstract: Conventional fluorescence molecular tomography (FMT) reconstruction requires
photons penetrating the whole object, which limits its applications to small animals. However,
by utilizing reflective photons, fluorescence distribution near the surface could be reconstructed
regardless of the object size, which may extend the applications of FMT to surgical navigation
and so on. Therefore, time-domain reflective fluorescence molecular tomography (TD-rFMT) is
proposed in this paper. The system excites and detects the emission light from the same angle
within a field of view of 5 cm. Because the detected intensities of targets depend strongly on the
depth, the reconstruction of targets in deep regions would be evidently affected. Therefore, a
fluorescence yield reconstruction method with depth regularization and a weighted separation
reconstruction strategy for lifetime are developed to enhance the performance for deep targets.
Through simulations and phantom experiments, TD-rFMT is proved capable of reconstructing
fluorescence distribution within a 2.5-cm depth with accurate reconstructed yield, lifetime, and
target position(s).

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Fluorescence molecular tomography (FMT) is a functional imaging modality which is capable of
noninvasively detecting in-vivo biological activities on molecular level. It provides quantitatively
accurate three-dimensional (3D) distributions of endogenous or exogenous fluorescent biomarkers
in thick and highly scattering media such as biological tissues. Therefore, FMT is a vital tool
in preclinical oncology research, drug development and other biological research areas [1–5].
Despite its advantages of non-ionizing radiation and low cost, the emerging clinical applications
of FMT have been hampered not only by its low spatial resolution caused by the ill-posed nature
of its reconstruction, i.e., inverse problem, but also by the limited penetration of near infrared
photons in biological tissues. The ill-posed nature of the reconstruction stems from the strong
scattering of near infrared photons in biological tissues. Conventionally, the spatial resolution of
FMT could be improved by several methods including utilizing early photons that suffer less
from scattering [6–9], applying Lp-norm regularization for sparser reconstruction image [10–12]
and so on. Nowadays, FMT in both continuous-wave and time-domain modes could separate
small targets with an edge-to-edge distance of about 1 mm within a 30-mm-diameter field of
view [9,11], which has already met the needs of most clinical applications. The penetration
of near infrared in biological tissues is on the level of several centimeters, which would be the
main reason that the applications of FMT are limited to small animals in preclinical studies.
Conventional FMT requires photons penetrating the objects for adequate spatial information of
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the fluorescence distribution. Therefore, the section diameters of what FMT could be applied to
is typically smaller than 5 cm, which tallies with the size of small animals such as nude mice or
rats for preclinical studies. Few applications of FMT in human subjects aim at fingers or other
parts with small section diameters [13].

To overcome the penetration limit of FMT, the most direct approach is to introduce detectors
with much lower dark count rates to increase the detection sensitivity, which is unfortunately
unavailable at present. On the other hand, in the aspect of diffuse optical tomography (DOT), it
has been reported that by utilizing photons with reflective trajectory, there could be applications
in parts of human body, such as necks and brains of infants, which near infrared photons cannot
penetrate completely [14,15]. For instance, based on sources and detectors with spacings of 20
mm and 30 mm respectively, attached on the transverse plane, the reflected light was detected, and
an optical anatomical neck model could be reconstructed for the feasibility study of diffuse optical
imaging of malignant lesions in the thyroid gland [14]. Then it is rational to hypothesize that the
penetration limit of FMT could be circumvented by a reflective geometry. In this case, reflected
photons would provide the information needed to reconstruct the fluorescence distribution in the
external region of the subject under scanning, regardless of the section diameter of the subject.
Even though the reconstruction of fluorescence distribution in deep regions is still challenging,
the distribution in the external region could provide abundant biological information about tissues
or organs in this region such as skin, ligament, muscle, or organ exposed during surgery, which
is useful in many clinical applications such as surgical navigation [16–18], diagnosis of sports
injuries [19] and so on.

There are several studies using FMT in incomplete reflective geometry, which could be applied
in objects with larger section diameters, even though the penetration limit would still exit. In a
previous study [20], for example, the sources and detectors of an FMT system were placed with
an incomplete reflective angle of around 90° and single fluorescent target located 5 mm below
the surface of nude mice was successfully reconstructed. Reconstruction of multiple fluorescent
targets remains challenging for FMT in reflective geometry, since deeper targets yield much
weaker fluorescence, and the reconstruction would be significantly affected by shallower targets.
To settle this problem, depth regularization which assigns depth-dependent weights to Lp-norm
regularization would be applied to FMT reconstruction, inspired by previous work in DOT [21].

In this paper, a depth-recognizable time-domain fluorescence molecular tomography in
reflective geometry (TD-rFMT) is proposed. In the TD-rFMT system, spatial information
including depth information is provided not only by the different spacings and positions of
the source-detector pairs, but also by the different propagation trajectories of near infrared
photons that vary over time. Time derivatives of the data curves collected, i.e., temporal
point spread functions, are chosen as reconstruction measurements, which have been proved
to improve the quality of reconstruction [9]. Furthermore, with depth regularization applied
to the reconstruction, it is proved in both simulations and phantom experiments that TD-rFMT
is capable of reconstructing the distribution of multiple targets at diverse depths (i.e., different
depths within a large range).

2. Setup and method

2.1. System setup

A fiber-coupled time-domain fluorescence molecular tomography system in reflective geometry
is built by integrating a TCSPC module (SPC-150, Becker & Hickl GmbH, Germany), a PMT
(PML-16-C, Becker & Hickl GmbH, Germany) and a femto-second laser generator (Spectra-
Physics, Newport Corporation, Canada) which is set to work at 780-nm wavelength (80 MHz,
100 fs pulse-width), as shown in Fig. 1(a). The experimental system also consists of a rectangular
phantom, a 16×2 optical switch for fibers, and a group of filters, including an achromatic
doublet (AC254-030-B, Thorlabs, Newton, NJ) and two bandpass fluorescence filters with center



Research Article Vol. 12, No. 7 / 1 July 2021 / Biomedical Optics Express 3808

wavelength of 840 nm (ff01-840/12-25, Semrock, Rochester, NY; XBPA840, Asahi Spectra,
Torrance, CA) to eliminate the excitation light. The temporal resolution of the TCSPC module is
about 12.5 ps, and the time window is 12.5 ns to ensure that the majority of the temporal point
spread function (TPSF) could be obtained.

Fig. 1. Schematic diagram of the TD-rFMT system and phantom experimental setup. (a)
TD-rFMT system. (b) Transverse view of the rectangular phantom. (c) The locations and
FOV of excitation sources and detectors.

As shown in Fig. 1(b), the rectangular phantom with a size of 70×40×50 mm3 is filled with 1%
intralipid and two cylindrical targets with a diameter of 5 mm are positioned inside the phantom,
while the horizontal distance (HD) between the centers of the targets and the depths of the targets
D1 and D2 (i.e., the distances from the surface to the centers of the targets) vary according to
different experimental setups. As shown in Fig. 1(c), on the surface of the phantom, 11 fibers are
placed uniformly with an adjacent distance of 5 mm in a field of view (FOV) of 50 mm for both
detection and excitation. These fibers are on the plane with the same height, which is named the
excitation plane. During measurements, for each projection, the excitation laser is guided into
the phantom through one of the fibers while the other 10 fibers serve as detectors. Thus, there are
10 probe points in each projection. Because the excitation laser is switched among all the fibers
producing 11 projections, a total of 110 TPSFs are acquired, from which the distribution of the
targets would be reconstructed.

2.2. Inverse problem

For the inverse problem of TD-rFMT, the forward model was calculated by telegrapher equation
based on the finite element method (FEM) [7]. And so were all the simulations and phantom
experiments in this paper. The relation between the distribution of fluorescence and the TPSF
could be expressed as the following physical equation:

Tpsf (t) = C
∫
r

X(r)Φf (r, t) ∗ Φe(r, t) ∗ L(r)e−L(r)tdr (1)
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where C is a constant depending on the fluorescence molecule. Φf (r,t) denotes the photon density
of the excitation light. Φe (r,t) denotes the Green’s function of the emission light. X(r) denotes
the distribution of fluorescence yield and L(r) denotes the distribution of the reciprocal of lifetime,
i.e., inverse lifetime, of the fluorescence molecule. The * operator represents convolution of time
dimension.

To reconstruct the distribution of fluorescence, it requires the distribution of inverse lifetime
which is usually unknown. In this paper, we propose a tail-fit method to obtain an estimation of
the inverse lifetime distribution L’(r). It would be proved in simulations and phantom experiments
in this paper that with L’(r), reconstruction of the distribution of fluorescence yield X(r) is
achievable, while the location and value of the reconstructed targets would not be affected. The
tail-fit method is formulated as follow:

L′(r) =
∑︂

i
Li

∫
t

Φ
i
f (r, t) ∗ Φi

e(r, t)dt (2)

where Li denotes the inverse lifetime estimated from the ith TPSF. To ensure the accuracy of Li,
only the TPSFs of neighboring source-detector pairs are taken into consideration. And because
Φi

f (r, t) ∗ Φi
e(r, t) is the sensitivity function of the ith source-detector pair, L’(r) is the weighted

average of the sensitivity functions integrated over time, whose weights are the corresponding
Li. In addition, Li is estimated as the solution of the equation (e−LiT2 − e−K′T2 )eLtail(T2−T1) =

e−LiT1 − e−K′T1 , where Ltail = [ln (Tpsf (T1)) − ln (Tpsf (T2))]/ (T2 − T1) is acquired from the
ith TPSF. And K ′ = [ln (A′(T1)) − ln (A′(T2))]/ (T2 − T1) where A′(t) =

∫
r
Φf (r, t) ∗ Φe(r, t)dr.

When T2 = 2T1, the equation is quadratic, and Li could be easily solved.
To illustrate the estimation of Li, assumptions and approximations are made. Assuming that for

the ith TPSF, the distribution of inverse lifetime is uniform with an effective value of Li, the TPSF
could be expressed as Tpsf (t) = C · A(t) ∗ Lie−Lit, in which A(t) =

∫
r

X(r)Φi
f (r, t) ∗ Φ

i
e(r, t)dr. In

addition, assuming that the tail of the TPSF is dominated by the logarithm tail of A(t) and Lie−Lit,
the TPSF could be further simplified as Tpsf (t) = Ce−Kt ∗ Le−Lit, where K is the logarithm tail
of A(t). So ln(Tpsf (t))= ln(e−Kt − e−Lit) + ln

(︂
Li

Li−K

)︂
+ C′. Since X(r) is unknown, K could be

approximated by the logarithm tail of A’(t) which is K’ mentioned above. Then the equation
could be obtained.

With the estimated lifetime distribution, the inverse problem of TD-rFMT could be formulated
based on the first-order temporal derivatives of the TPSF at specified time points, while choosing
derivative as data was proved to enable better reconstruction in previous work [9]. The inverse
problem is shown as follows:

WSX = YS, WS ∈ Rn×m, X ∈ Rm, YS ∈ Rn (3)

where X denotes the fluorescence yield distribution to be reconstructed. YS denotes the vector
of measurements which are the derivatives of TPSF. WS is the coefficient matrix of the inverse

problem. And the jth row of WS is given by WS(j, r) =
dΦi

f (r,t)∗Φ
i
e(r,t)∗L′(r)e−L′(r)t

dt |t=Tj , which is
the temporal derivative of the ith sensitivity function at time point Tj. It is also named as the
sensitivity map and is flattened into a row. For derivative-based reconstruction, a sensitivity map
is the probability distribution of the trajectory changes of the photons from an excitation source
to a detector at a particular time point T. On the other hand, if the reconstruction is based on the
TPSF values, the sensitivity maps would denote the probability distribution of the trajectory of
the photons from a source to a detector at a particular time point T. Derivative-based sensitivity
maps would increase independence among measurements and enhance spatial resolution and
stability of reconstruction.
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2.3. Reconstruction method with depth regularization

In previous work of DOT in reflective geometry [21], reconstruction sensitivity in deep regions
is extremely low, resulting in false depth of deep targets in the reconstruction results when
there are targets in shallow regions simultaneously. The same defect exists in reflective FMT.
Depth-dependent regularization assigns smaller regularization parameters with larger depths and
could improve the reconstruction uniformity in DOT [21]. Such a method is expected to improve
the reconstruction performance of TD-rFMT as well.

In this paper, a depth-regularized Tikhonov-regularization-based projecting sparsity pursuit
method (PrSP-Tk-D) was proposed as the reconstruction method with depth regularization to
solve the inverse problem of TD-rFMT. The Tikhonov-regularization-based projecting sparsity
pursuit method proposed in our previous work [22] has been proved to be a fast and stable
reconstruction method. It is not sensitive to the regularization coefficient and is capable of
achieving high spatial resolution and high image quality. The PrSP-Tk-D method is described as
follows:

min
X>0

| |WSX − YS | |
2
2 + α | |DλX | |22 (4)

where X denotes the distribution of fluorescence yield to be reconstructed. WS denotes the
coefficient matrix. YS denotes the vector of measurements. α is the regularization coefficient.
Dλ is a diagonal matrix. The diagonal elements of Dλ are the depth regularization parameters
given by Dλ(i)= 1

1+e−η(d−d0)
, in which d is the depth of the element, d0 is an offset depth and η is a

scaling coefficient. In this paper, d0 is set as 15 mm and η is set as 0.6 mm−1. Then, Dλ would
be normalized by its maximum element.

Algorithm 1. Depth-regularized Tikhonov-regularization-based projecting sparsity pur-
suit method

The process of the PrSP-Tk-D method is shown in Algorithm 1. α is the regularization
coefficient and varies from 1×10−2 to 1×10−3. βac is the acceleration coefficient and is set as 0.6,
controlling the step size of acceleration projection [22]. γac is the slackness factor typically set
as 0.2. And εsparse ranging from 0.5 to 2, is the sparsity error factor controlling the sparsity of
the solution. Algorithm 1 is very similar to the algorithm previously proposed in [22], with the
main difference being the depth regularization parameters as mentioned above.

2.4. Weighted separation reconstruction of lifetime

With the fluorescence yield distribution reconstructed by the PrSP-Tk-D method, the distribution
of the reciprocal of fluorescence lifetime could be directly reconstructed based on a time-domain
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strategy [23]. However, similar to fluorescence yield reconstruction, lifetime reconstruction in
the deep regions has a low sensitivity. The reconstructed value of inverse lifetime in the deep
regions would be much lower than expected if any target exists in the shallow regions. A weighted
separation reconstruction strategy was proposed for accurate inverse lifetime reconstruction in the
deep regions. Inverse lifetime reconstruction of targets from the reconstructed yield distribution
would be carried out separately from shallow to deep regions. Moreover, for each target, the
weight of each TPSF would be resigned according to the contribution of the target in the TPSF
and the absolute value of fluorescence yield would be adjusted according to the resigned weights.
Therefore, based on a previously reported L1 regularization projected steepest descent algorithm
(L1PSD) [23], an L1 regularization weighted separation reconstruction algorithm (L1WSR) was
proposed. The L1WSR algorithm is expressed as solving the following optimization problem:

min
Lr(r)>0,r∈Tarm

{︃
1
2

[︃
| |CmF(Lr(r)) − CmYV | |

2
2 + λ

√︂
| |Lr(r)| |22 + µ

]︃}︃
(5)

where Lr(r) denotes the inverse lifetime distribution to be reconstructed. Tarm denotes the
region of the mth target. During the lifetime reconstruction of the mth target, only the elements
belonging to Tarm are modifiable while the others are fixed as values of L’(r) mentioned
above in this paper or values of Lr(r) that have been solved. YV denotes the vector of the
TPSF values at specific time points. λ is the regularization parameter whose initial value is
1×10−10 multiplied by the mean of YV and would decay over iterations. µ is a smoothing
parameter whose value is 1×102. F(Lr(r)) is a nonlinear function and its kth element is given
by Fk =

∫
r

X(r)Φk
f (r, t) · Φk

e(r, t) · Lr(r)e−Lr(r)tdr |t=tk , where tk, Φk
f and Φk

e correspond to the kth

elements of YV . Cm denotes the weight matrix according to contribution of the mth target in
each TPSF. Cm is a diagonal matrix, with the kth diagonal element being 1, 10, 50, 2×102 or
1×103, depending on whether the contribution rate of the mth target in the TPSF corresponding

to the kth diagonal element
∫
t

∫
r∈Tarm

X(r)Φk
f (r, t) · Φk

e(r, t)drdt

/︄ ∫
t

Tpsf k(t)dt is greater than 0,

0.5, 0.35, 0.6 or 0.9. Moreover, for the steepest descent method, the element of the gradient
F(Lr(r)) is given by ∇Fk

rn = X(rn)Φ
k
f (rn, t) · Φk

e(rn, t) · (1 − Lr(rn))e−Lr(rn)t |t=tk .

3. Simulations and experiments

Simulations and phantom experiments in this paper were all based on the TD-rFMT system
mentioned above. There are 10 detectors for each projection while there are 11 projections in
total. In the calculation of simulations and forward model, the absorption coefficient µa is set
as 3 mm−1 and the reduced scattering coefficient µs’ is set as 1×103 mm−1 while the sampling
temporal resolution is set as 25 ps, twice as the temporal resolution of the PMT. The forward
model is discretized into mesh grid with resolution of 0.1×0.1×0.2 mm3. For the simulations,
Gaussian noise with specific amount of energy was added to approximate the signal-to-noise
ratio (SNR) in the phantom experiments. The SNRs in the simulations typically ranged from 10
dB to 60 dB for most of the TPSFs, although they could be less than 0 dB for some of the TPSFs.

To evaluate the performance of the proposed PrSP-Tk-D and L1WSR methods, 9 sets of
simulations were carried out, including 5 sets of homogeneous-target simulations and 4 sets of
heterogeneous-target simulations. In the simulations, there are two targets with a diameter of 5
mm and a height of 10 mm placed symmetrically about the excitation plane, whose values of
fluorescence yield are the same. For homogeneous-target simulations marked as simulations 1–5,
the lifetimes of the targets are both set as 1 ns. Meanwhile, for heterogeneous-target simulations
marked as simulations 6–9, the lifetime of Target 1 is set as 1 ns while the lifetime of Target 2
is set as 0.6 ns. The position setups of simulations 1–9, including the depth of Target 1 (D1),
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the depth of Target 2 (D2), horizontal distance (HD), and the edge-to-edge distance (EED), are
shown in Table 1.

Table 1. Position setups of simulations.

Simulation 1 2 3 4 5 6 7 8 9

D1 (mm) 10 15 20 10 7 10 20 10 7

D2 (mm) 10 15 20 16 18 10 20 17 18

HD (mm) 10 12 14 8 0 10 14 10 0

EED (mm) 5 7 9 5 6 5 9 7.2 6

The reconstruction was performed using the PrSP-Tk-D and L1WSR methods. As shown in
Fig. 2, the fluorescence yield distributions for all the simulations are successfully reconstructed,
regardless of targets at different depths in Fig. 2(d) and 2(h), and even the deep targets with HD= 0
mm are recovered as displayed in Fig. 2(e) and 2(i). And it can be found that the spatial resolution
decreases as the depth increases. As can be seen from Table 2, the positioning errors (PE) of the
targets in the heterogeneous-target simulations 6–9 are mostly smaller than 1 mm, indicating
that the tail-fit estimation method for L’(r) is practical in achieving accurate fluorescence yield
distribution reconstruction even the lifetimes of targets are diverse (i.e., with a large range).

The PE is given by PE= xrecon4 − xtrue where xtrue and xrecon =
∑︁

r∈Tar
X(r)x(r)

/︃ ∑︁
r∈Tar

X(r) are the

horizontal coordinate or depth of the center of the true target and the value-weighted center (i.e.,
centroid) of the reconstructed target. In addition, it can be found from Table 2 that the PEs of
targets in the homogeneous-target simulations are also mostly smaller than 1 mm while the PEs
in depth (DE) of Target 2 are slightly better than those in the heterogeneous-target simulations.
It is because larger inverse lifetime would result in larger deviation by the tail-fit method. For
heterogeneous Target 2 with inverse lifetime of 1.67 ns−1, the deviation could be about 0.4
ns−1 while the deviation for Target 1 is smaller than 0.1 ns−1. Meanwhile, it can be seen that
although depth regularization improves the performance, diverse depths still result in slightly
lower performance in terms of positioning and relative reconstructed values (RV). The RV is
given by RV=EV1:EV2 in which effective value (EV) is defined as the average yield value of the
corresponding target.

Fig. 2. Reconstructed yield images on the excitation plane (a)-(i) for simulations 1–9. All
the images are normalized by their maximum values.

The reconstructed inverse lifetime images of simulations 1, 3, 4 and 6–8 are shown in Fig. 3.
As can be observed in Fig. 3(a)-(c), the inverse lifetime distributions of the homogeneous targets
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Table 2. Positioning errors (PE), relative values (RV), effective inverse lifetimes (EIL) and the
relative errors of EIL (EILE) in the simulations.

Simulation 1 2 3 4 5 6 7 8 9

RV (EV1:EV2) 1:0.98 0.99:1 0.97:1 0.80:1 0.82:1 1:0.91 1:0.99 0.89:1 0.82:1

Ta
rg

et
1

PE
(m

m
)

Horizon 0.15 0.24 0.17 0.57 0.37 0.03 −0.24 0.26 0.37

Depth −0.24 −0.54 0.28 −0.20 0.16 −0.14 0.81 −0.22 0.42

EIL (ns−1) 0.98 0.99 0.96 1.05 1.02 1.01 0.98 1.02 1.06

EILE 2.0% 1.0% 4.0% 5.0% 2.0% 1.0% 2.0% 2.0% 6.0%

Ta
rg

et
2

PE
(m

m
) Horizon 0.92 −0.24 0.79 0.46 −0.13 0.76 0.15 0.03 0.13

Depth 0.05 −0.33 −0.05 0.63 1.64 −0.54 −1.13 −0.68 −0.31

EIL (ns−1) 0.97 0.98 0.96 1.03 1.23 1.54 1.50 1.39 1.43

EILE 3.0% 2.0% 4.0% 3.0% 23% 7.8% 10.2% 16.8% 14.4%

are similar, while the inverse lifetimes of the heterogeneous targets are apparently distinguishable
in Fig. 3(d)-(f). It proves that the L1WSR method in TD-rFMT is capable of qualitative inverse
lifetime reconstruction. Furthermore, as shown in Table 2, the effective inverse lifetimes (EIL)
of all the simulations are close to the true inverse lifetimes, with relative errors of EIL (EILE)
smaller than 10% except for the targets with true lifetime of 0.6 ns in the deep region. The EIL is

calculated as the value-weighted average of inverse lifetime EIL =
∑︁

r∈Tar
X(r)L(r)

/︃ ∑︁
r∈Tar

X(r). As

can be seen in simulation 5, because the yield distribution is not commendably reconstructed, the
inverse lifetime of the target in the deep region has been affected, resulting in larger errors of EIL.
And although the weighted separation reconstruction strategy ensures lifetime reconstruction
of the homogeneous targets in the deep region, there are still improvements to be made for
more accurate reconstruction of quantitative distribution of targets with large inverse lifetime.
Therefore, it is proved in the simulations that accurate depth-recognizable fluorescence yield and
lifetime images of TD-rFMT could be achieved by the PrSP-Tk-D and L1WSR methods.

The performance of TD-rFMT and the methods is further evaluated in the phantom experiments.
Hence, 8 sets of phantom experiments were carried out, which included 4 sets of homogeneous-
target experiments and 4 sets of heterogeneous-target experiments. In the experiments, two tubes
with a diameter of 5 mm were buried inside the rectangular phantom and placed symmetrically
about the excitation plane. In the homogeneous-target experiments numbered as 1–4, the tubes
filled with 10 µM Indocyanine Green/dimethylsulphoxide (ICG/DMSO) with liquid height of 20
mm served as homogeneous targets. On the other hand, in the heterogeneous-target experiments
numbered as 5–8, one tube filled with 2 µM ICG/alcohol (ACH) was marked as Target 1 and the
other filled with 10 µM ICG/DMSO was marked as Target 2. According to our measurements,
the inverse lifetime of targets with 10 µM ICG/DMSO is 0.95 ns−1, while the inverse lifetime
of targets with 2 µM ICG/ACH is 1.45 ns−1, and the fluorescence yield ratio of target with 2
µM ICG/ACH to target with 10 µM ICG/DMSO is 0.54:1. The position setups of phantom
experiments 1–8 are shown in Table 3. Besides the lifetime and yield of Target 1, the position of
targets in heterogeneous-target experiments 5–8 were the same as those in homogeneous-target
experiments 1–4, respectively.

As shown in Fig. 4, the reconstruction results of the phantom experiments agree with the
results of the simulations. As shown in Table 4, the targets are reconstructed successfully with
most HD errors smaller than 1 mm and positioning errors in depth (DE) smaller than 1 mm. In
addition, for heterogeneous targets with diverse yield values, the relative values are close to the
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Fig. 3. Reconstructed images of inverse lifetime on the excitation plane (a)-(c) for
homogeneous-target simulations 1, 3, 4 and (d)-(f) for heterogeneous-target simulations
6–8. Effective lifetimes (EL, reciprocal of EIL) of the targets are shown. Zero values were
removed.

Table 3. Position setups of phantom experiments.

Phantom experiment 1 2 3 4 5 6 7 8

D1 (mm) 10 20 10 10 10 20 10 10

D2 (mm) 10 20 20 20 10 20 20 20

HD (mm) 10 20 20 10 10 20 20 10

EED (mm) 5 15 17.4 9.1 5 15 17.4 9.1

true ratio 0.54:1, which further proves the capability of the PrSP-Tk-D method in accurate yield
reconstruction. However, in the experiments with diverse depths, albeit with depth regularization,
larger PEs still occur, especially for targets in the deep region. And as can be seen in Fig. 4(e)-(d),
the depths of targets with larger inverse lifetime appear to be shallower than expected, compared
with the simulation results. And for deep targets close to the shallow targets in the horizontal
direction, as shown in Fig. 4(d) and 4(h), the reconstructed yield is not accurate enough in terms
of either shape or PE. It may be on account of the shadowing effects. In the deep region right
below the shallow targets, the reconstruction sensitivity would be much lower than that of other
deep regions. This is because in any measured TPSF, the intensity contribution of the shallow
targets would be dominant compared with that of the targets in the deep region below it.

The reconstruction results of inverse lifetime in the phantom experiments also agree with the
simulation results. As shown in Fig. 5, the similar inverse lifetime distribution of homogeneous
target as and the apparently distinguishable distribution of heterogeneous targets support the
good performance of the L1WSR method in TD-rFMT in the phantom experiments. And the
relative errors of effective inverse lifetime in the phantom experiments are mostly smaller than
10%, which further validates the accuracy of lifetime reconstructed by the method, although the
shadowing effects mentioned above have harmed the results of phantom experiments 4 and 8.
Although the performance is imperfect and the spatial resolution of fluorescence yield needs
further improvement, the PrSP-Tk-D and L1WSR methods in TD-rFMT show good performance
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Fig. 4. Reconstructed yield images on the excitation plane (a)-(h) for phantom experiments
1–8. All the images were normalized by their maximum values.

Table 4. Positioning errors in depth (DE), horizontal distances (HD), relative values (RV), effective
inverse lifetimes (EIL) and the relative errors of EIL (EILE) in the phantom experiments.a

Phantom
experiment 1 2 3 4 5 6 7 8

HD (mm) 10.00 (10) 19.39 (20) 20.87 (20) 10.58 (10) 10.57 (10) 18.62 (20) 19.53 (20) 14.07 (10)

RV (EV1/EV2) 0.90:1 0.93:1 1:0.77 1:0.73 0.53:1 0.50:1 0.64:1 0.50/1

Ta
rg

et
1 DE (mm) 0.17 (10) −0.43 (20) 0.13 (10) −0.11 (10) −0.67 (10) −1.59 (20) −0.72 (10) −1.64 (10)

EIL (ns−1) 0.83 (0.95) 0.93 (0.95) 1.00 (0.95) 0.99 (0.95) 1.44 (1.45) 1.40 (1.45) 1.58 (1.45) 1.48 (1.45)

EILE 12.6% 2.1% 5.3% 4.2% 0.7% 3.5% 9.0% 2.1%

Ta
rg

et
2 DE (mm) 0.15 (10) 0.64 (20) 1.39 (20) −1.68 (20) 0.66 (10) 0.77 (20) 1.27 (20) −0.94 (20)

EIL (ns−1) 0.97 (0.95) 1.00 (0.95) 0.96 (0.95) 0.82 (0.95) 0.97 (0.95) 0.83 (0.95) 1.01 (0.95) 0.79 (0.95)

EILE 2.1% 5.3% 1.1% 13.7% 2.1% 12.6% 6.3% 15.8%

aData shown in bold type inside the blanket is the true value of HD, depth of target, or EIF.

in the phantom experiments, with accurate yield values, accurate lifetimes, and the depth problem
are largely alleviated.
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Fig. 5. Reconstructed images of inverse lifetime on the excitation plane (a)-(d) for
homogeneous-target phantom experiments 1–4 and (e)-(h) for heterogeneous-target phantom
experiments 5–8. Effective lifetimes (EL, reciprocal of EIL) of the targets are shown. Zero
values were removed.

4. Discussion

In conclusion, depth-recognizable time-domain fluorescence molecular tomography in reflective
geometry was proposed in this work. TD-rFMT not only could circumvent the penetration limit
of FMT, enabling its application in objects with large section diameters, but also could prevent
potential excitation light leak during measurements that happens in conventional geometry that
requires transmission. In addition, TD-rFMT could be non-contact and does not require the
rotation of the object, which will furtherly benefit its applications. The depth-recognizable
reconstruction of fluorescence yield distribution and inverse lifetime distribution were achieved
by the depth-regularized Tikhonov-regularization-based projecting sparsity pursuit method and
the L1 regularization weighted separation reconstruction method proposed along with TD-rFMT
in this paper. The reconstruction of fluorescence yield distribution is based on derivative of
the TPSF and an estimated lifetime distribution, which provide the information for accurate
reconstruction. And it is proved in the simulations and phantom experiments that by using the
PrSP-Tk-D method in TD-rFMT, fluorescence yield images could be successfully reconstructed
with precise positioning, accurate relative value, and acceptable spatial resolution, no matter when
the targets are located in the shallow region, in the deep region or in both regions. Furthermore,
with the reconstructed yield distribution, inverse lifetime distribution of each target could be
separately reconstructed by the L1WSR method. However, L1WSR method cost a large amount
of computation. Computation cost could be reduced by approximating the nonlinear problem
with a linearized method [24]. The simulations and phantom experiments also proved that the
reconstructed inverse lifetime distributions are accurate. An accurate reconstructed lifetime
distribution is valuable because it is absolute quantitative, and lifetime of the fluorescence
molecule could be quantitative indicator of coefficients of the biological environment such as pH
and temperature [25].

However, the spatial resolution of fluorescence yield images and accuracy of inverse lifetime
images are not as good as expected for extreme cases like phantom experiments 4 and 8. In the
extreme cases, the target in the deep region was placed right below the shallow target and as
mentioned above, the contribution of the deep target in each measurement would be much lower
than that of the shallow one. Therefore, further improvements are required. A deep learning
method that could enhance the performance of the extreme cases and the spatial resolution in the
deep regions would be taken into consideration in the future.
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